Genericity and amalgamation of classes of Banach spaces
نویسندگان
چکیده
منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولamenability of banach algebras
chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...
15 صفحه اولthe impact of attending efl classes on the level of depression of iranian female learners and their attributional complexity
می توان گفت واقعیت چند لایه ا ی کلاس های زبان انگلیسی بسیار حائز اهمیت است، زیرا عواطف و بینش های زبان آموزان تحت تاثیر قرار می گیرد. در پژوهش پیش رو، گفته می شود که دبیران با در پیش گرفتن رویکرد فرا-انسانگرایی ، قادرند در زندگی دانش آموزانشان نقش مهمی را ایفا سازند. بر اساس گفته ی ویلیامز و بردن (2000)، برای کرل راجرز، یکی از بنیان گذاران رویکرد انسانگرایی ، یادگیری بر مبنای تجربه، نوعی از یاد...
An amalgamation of the Banach spaces associated with James and Schreier, Part I: Banach-space structure
We create a new family of Banach spaces, the James–Schreier spaces, by amalgamating two important classical Banach spaces: James’ quasi-reflexive Banach space on the one hand and Schreier’s Banach space giving a counterexample to the Banach–Saks property on the other. We then investigate the properties of these James–Schreier spaces, paying particular attention to how key properties of their ‘a...
متن کاملOn Classes of Banach Spaces Admitting “small” Universal Spaces
We characterize those classes C of separable Banach spaces admitting a separable universal space Y (that is, a space Y containing, up to isomorphism, all members of C) which is not universal for all separable Banach spaces. The characterization is a byproduct of the fact, proved in the paper, that the class NU of non-universal separable Banach spaces is strongly bounded. This settles in the aff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2007
ISSN: 0001-8708
DOI: 10.1016/j.aim.2006.05.013